Biocalcification of Sand through Ureolysis

نویسندگان

  • Chiung-Wen Chou
  • Eric A. Seagren
  • Ahmet H. Aydilek
  • Michael Lai
چکیده

Biological processes may provide great and previously unexplored opportunities for cost-effective, in situ improvement of the engineering properties of soil. A laboratory study was conducted to evaluate the changes in geomechanical properties of sand attributable to the formation of calcium precipitates induced through ureolysis catalyzed by Sporosarcina pasteurii (S. pasteurii). Specifically, direct shear and California Bearing Ratio (CBR) tests were conducted on sand specimens subjected to treatment by growing, resting, and dead S. pasteurii cells in completely stirred tank reactors and completely mixed biofilm reactors, respectively. Scanning electron microscopy analyses were also conducted to evaluate microbially induced precipitation. The results of the study show that the bacterial cells effectively improved the geomechanical properties of the sand. Growing cells improved the sand properties owing to microbially induced precipitation and related pore volume changes, whereas dead and resting cells generally caused smaller increases in friction angle and bearing strength. Analysis of the sand from CBR specimens treated with growing cells demonstrated that the microbial and chemical processes both contributed to the clogging of the porous medium. DOI: 10.1061/(ASCE)GT.1943-5606.0000532. © 2011 American Society of Civil Engineers. CE Database subject headings: Soil properties; Bacteria; Calcium carbonate; Soil strength; Sand (soil type). Author keywords: Soil properties; Bacteria; Calcium carbonate; Strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequestration of Radionuclides and Metal Contaminants through Microbially-Induced Carbonate Precipitation

Microbially induced carbonate precipitation (MICP), an emerging technology for soil improvement, also may be used to sequester (biomineralize) radionuclides and metal contaminants (e.g., 90 Sr 2+ , Cd 2+ ) in groundwater, a significant problem at some U.S. Department of Energy sites. Previous work using the bacterium Bacillus pasteurii suggests that in-situ sequestration of these contaminants c...

متن کامل

Whole cell kinetics of ureolysis by Sporosarcina pasteurii.

AIMS Ureolysis drives microbially induced calcium carbonate precipitation (MICP). MICP models typically employ simplified urea hydrolysis kinetics that do not account for cell density, pH effect or product inhibition. Here, ureolysis rate studies with whole cells of Sporosarcina pasteurii aimed to determine the relationship between ureolysis rate and concentrations of (i) urea, (ii) cells, (iii...

متن کامل

Bio-grout based on microbially induced sand solidification by means of asparaginase activity

Bio-grout, a new ground improvement method, has been recently developed to improve the mechanical properties, decrease the permeability of porous materials, reinforce or repair cementitious materials and modify the properties of soil or sand. Bio-grout production depends on microbially induced calcite precipitation (MICP), which is driven mainly by an enzyme, urease. However, urease-based MICP ...

متن کامل

Adaptation of urine source separation in tropical cities: Process optimization and odor mitigation.

UNLABELLED Source-separating urine from other domestic wastewaters promotes a more sustainable municipal wastewater treatment system. This study investigated the feasibility and potential issues of applying a urine source-separation system in tropical urban settings. The results showed that source-separated urine underwent rapid urea-hydrolysis (ureolysis) at temperatures between 34-40 degrees ...

متن کامل

Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii.

The particular bacterium under investigation here (S. pasteurii) is unique in its ability, under the right conditions, to induce the hydrolysis of urea (ureolysis) in naturally occurring environments through secretion of an enzyme urease. This process of ureolysis, through a chain of chemical reactions, leads to the formation of calcium carbonate precipitates. This is known as Microbiologically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011